
CSC 306 EXECUTION PHASE

GODFREY MUGANDA

1. Project 4 Overview

This project will complete the compiler/interpreter that we have been working on.
Here is an outline of what you have to do:

1. Add exit and newline statements. This is equivalent to adding productions

STMT ::= exit | newline

to the grammar. You will need to make appropriate changes to the lexical analyzer,
parser, and internal representation.

The exit statement is equivalent to calling

exit(0);

in C++, and the newline statement is equivalent to the statement

cout << endl;

in C++.

You will need to modify the compiler phase so that a representation of the exit
statement is loaded as the last statement in the instruction table.

2. Add a global variable

int non fatal error count = 0;

to keep track of the number of non-fatal errors. Best way to proceed is to add a

void error(const string &message)

method to the parser or compiler class and use this method to report all non-fatal
errors to the listing class. This method will increment the variable for the number
of fatal errors everytime it is called.

3. Modify the compiler to prohibit the occurrence of continue and break state-
ments outside of loops (loop or while statements). Occurrences of break and
continue outside a loop will be flagged as a non-fatal error.

4. Implement the get value() methods for all subclasses of cmm super expr. For
the cmm string expr, the get value() method returns the index of the string in
the string table.

5. Implement all the execute() methods of the subclasses of cmm stmt. Each of
these methods will be responsible for executing a single statement taken from the
instruction table.

1

2 GODFREY MUGANDA

2. Other Functions and Data Structures

You will need the following data structures (and one function) in the
CmmVirtualMachine.cpp file:

// Global variables

vector<string> string_table;

vector<cmm_stmt *> instruction_table;

cmm_variable_table variable_table;

int cmm_pc = 0;

// positions of top of loop in the instruction table

stack<int> loop_top_stack;

// stack of lists of break statements that appear in a loop.

stack<vector<break_stmt *>> break_stmts_stack;

int non_fatal_error_count = 0;

void cmm_execute()

{

if (non_fatal_error_count > 0)

{

throw "CMM program has errors.\n";

}

while (true)

{

cmm_stmt * p_current_stmt = instruction_table[cmm_pc];

//cerr << "executing statement at " << cmm_pc << endl;

cmm_pc ++;

p_current_stmt->execute();

}

}

These should all make sense to you because they were discussed in class. The
variable

int non_fatal_error_count

keeps track of the number of non-fatal errors: the code will not be executed unless
this variable is equal to 0 at the end of the compilation process.

The execute() method seems to have an infinite loop; but in fact, the program will
terminate because execution of the exit stmt will cause the interpreter to exit.

3. Declarations for the header file

In addition to the above, you need the following declarations in the
CmmVirtualMachine.h file:

/**

* Declarations of the string table, variable table,

* and instruction table, and program counter variable

*/

CSC 306 EXECUTION PHASE 3

extern vector<string> string_table;

extern cmm_variable_table variable_table;

extern vector<cmm_stmt *> instruction_table;

// positions of top of loop in the instruction table

extern stack<int> loop_top_stack;

class break_stmt;

extern stack<vector<break_stmt *>> break_stmts_stack;

extern int non_fatal_error_count;

extern int cmm_pc;

// execute the internal representation

extern void cmm_execute();

// declarations of functions to print the above tables

void string_table_print(ostream &);

void variable_table_print(ostream &);

void instruction_table_print(ostream &);

4. Test Files

A sample of test files will be posted at the course web site to get you started with
testing. As always, however, exhaustive testing is your own responsibility.

5. Due Dates

This is due the Friday night at the end of week 10. Any projects turned in after
that will be assessed a 10% penalty. No course project will be accepted for grading
if turned in after the sunday night prior to Finals week.

In additions, all projects other than the last one (this project) must be turned in
by Friday night at the end of week 10 or they will not be graded.

